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On the stability of a falling liquid curtain
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The stability of a falling liquid curtain is investigated. The sheet of liquid is assumed
two-dimensional, driven by gravity and influenced by a compressible cushion of air
enclosed on one side of the curtain. The linear stability problem is formulated in
the form of an integro-differential eigenvalue problem. Although experimental efforts
have consistently reported a peak in the low-frequency range of the spectrum, the
linear stability results do not show instabilities at these frequencies. However, a multi-
modal approach combined with a projection onto low-frequency modes reveals a
dominant and robust instability feature that is in good agreement with experimental
measurements. This instability manifests itself as a wave packet, consisting of a linear
superposition of linear global modes, that travels down the curtain and causes a
strong pressure signal in the enclosed air cushion.

1. Introduction
It is well known that thin water curtains that enclose a volume of air on one

side (see figure 1) can exhibit self-sustained oscillations which can lead to significant
noise levels and/or structural damage (see e.g. Schwartz 1966; Cremer & Ising 1972;
Casperson 1993). This is easily verified by observing the flow of waterfalls, dams
or weirs. The frequency of these oscillations is selected based on a coupling of an
instability in the fluid system to a feedback mechanism due to the pressure variations
in the air pocket (Naudascher & Rockwell 1994). Horizontal motions of the liquid
curtain lead to pressure variations in the air pocket which, in turn, modify the
deflection of the curtain. This feedback mechanism is strongest in closed air pockets,
even though it can also be observed in aerated air pockets (Falvey 1980).

Fluid oscillators enclosing a volume of gas have previously been studied, the
simplest examples being a spherical gas bubble in a liquid or a pulsating cavitation
bubble behind obstacles (e.g. Plesset & Prosperetti 1977). Little attention, however,
has been paid to liquid sheets whose oscillatory behaviour is modified by pressure
variations in the gas volume that they create. Most of the results on water curtain
oscillations have been of an experimental nature (e.g. Carman 1960; Kemp & Pullen
1961; Partenscky & Khloeung 1967) and report the selection of a distinct time
scale close to an integer multiple of the fall time of a particle within the sheet.
Among the few theoretical efforts to explain this frequency selection, Treiber (1974)
argued that a resonance condition between the pressure oscillations in the air cushion
and the pressure variations caused by the oscillating curtain is responsible for the
experimentally observed frequency. Assuming sinusoidal pressure variations in the air
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Figure 1. Sketch of the geometry for a falling liquid sheet.

pocket and modelling the flow in the curtain by a Lagrangian description of the path
of fluid particles under gravity only, he arrived at a frequency selection condition that
matched experimental results.

In this paper, we revisit the problem of liquid curtain oscillations influenced by an
enclosed compressible air cushion, but treat it as an instability of a globally coupled
system rather than as a resonant dynamical system. No a priori assumptions about the
time-dependence of the pressure oscillations or the shape of the liquid sheet are made.
An Eulerian framework is used to formulate the governing equations of motion and
a linear stability analysis based on low-frequency modes is presented. Experimental
data by L.-G. Sundström, L. Fäldt & F. Bark (1993, personal communication) and
Baille (1994) will be used to verify our results.

2. Mathematical description
The derivation of the governing equations for an oscillating liquid curtain follows

the standard procedure of formulating mass and momentum balances on an infinitesi-
mal control volume. Figure 1 shows the geometry of the flow situation and introduces
the relevant variables and constants. Before proceeding, however, various assumptions
have to be made to arrive at a mathematically tractable yet physically meaningful set
of equations. We will assume a liquid sheet that is thin compared to its horizontal
extent. In addition, we will take the fluid flow as laminar and two-dimensional. The
pressure in the air cushion does not vary in space, and the air cushion compresses
adiabatically and reversibly. Furthermore, the pressure difference across the curtain is
much smaller than the atmospheric pressure. Viscous and surface tension effects will
be neglected in the analysis, as will the effects of splashing and waves in the lower



Stability of a liquid curtain 165

basin. Finally, the inlet conditions are not affected by the oscillations of the liquid
sheet.

Following a derivation similar to Sundström et al., Weinstein et al. (1997) or
Mehring & Sirignano (1999), the system of equations governing the liquid sheet can
be written as
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with u and v the fluid velocity in the (downward) x-direction and the (horizontal) y-
direction, respectively. The thickness of the liquid curtain is denoted h, the horizontal
displacement from the x-axis is denoted f. The variable p stands for the pressure in
the liquid sheet, and the acceleration due to gravity is g. In the above equations, only
first-order sheet deflections are taken into account.

To close the system we need an expression for the pressure in terms of the dynamic
variables (u, v, h, f). Assuming isentropic conditions for the pressure in the cushion we
obtain (for an ideal gas)

p = p1 − p0 = p0

[(
1 +

1
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where p1 denotes the pressure in the air cushion, and p0 the ambient pressure.

We proceed by non-dimensionalizing all velocities by
√
gL, the horizontal displace-

ment of the curtain by a characteristic quantity A, the thickness of the film by the
inlet width H , and the pressure by ρgH . The independent variables x and t are
scaled by the height L of the curtain and by

√
L/g, respectively. This results in the

non-dimensionalized system of equations
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p = −k ∫ 1

0
f(x) dx (2.3e)

where ε = A/L measures the typical size of horizontal oscillations compared to the
length of the curtain, and the parameter k = γAp0/B describes the compressibility of
the air cushion. Non-dimensionalized boundary conditions of the form

u(0, t) = U, h(0, t) = 1, v(0, t) = 0, f(0, t) = 0 (2.4)

are imposed at the inlet (x = 0).

2.1. Linearized equations

Assuming oscillations of the liquid sheet that are small compared to the length of
the curtain, we will attempt a regular perturbation approach in the small parameter ε
with u = ū(x) + εu′(x, t) +O(ε2) for the vertical velocity and accordingly for the other
dependent variables.

At O(1) we obtain analytical solutions for the steady velocity, pressure and thickness
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profiles as follows:

ū(x) =
√
U2 + 2x, v̄(x) = 0, (2.5a, b)

p̄(x, t) = 0, h̄(x) =
U√

U2 + 2x
. (2.5c, d )

The next order, O(ε), yields the linear system of equations
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with κ = p0γL/B. The boundary conditions at the inlet are

u′(0, t) = 0, v′(0, t) = 0, h′(0, t) = 0, f̄(0, t) = 0. (2.7)

This system forms the foundation of the following linear stability analysis.

3. Linear stability analysis
The form of the linear system of equations (2.6) allows the reformulation of the

linear stability problem in terms of the horizontal velocity v′ and the horizontal
displacement f̄ from the vertical x-axis only. We obtain
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Using a modal temporal approach we let f̄(x, t) = F(x)eiωt and v′(x, t) = V (x)eiωt

which upon substitution yields, in matrix form, −ū(x)D −κū(x)
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(
V
F

)
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with F(0) = V (0) = 0 as the boundary conditions, D ≡ d/dx, and I as the identity
operator.

Equation (3.2) represents the dispersion relation for the liquid curtain in the form
of an integro-differential matrix operator. A spectral collocation technique based on
Chebyshev polynomials is employed to solve for the eigenvalues; both differentiation
and integration are spectrally accurate. Typical values for the compressibility coeffi-
cient range from κ = 7× 103 to 6× 104 under laboratory conditions (see table 1 for
typical dimensions); the velocity falls within the range of U = 0.3 to 1.5. For natu-
rally occurring waterfalls, we typically obtain κ ≈ 1000 and U ≈ 0.1. The spectrum
displayed in figure 2 for κ = 5 × 104 and U = 0.4 shows an eigenvalue distribution
that is symmetric about the imaginary axis. For higher phase velocities ωr , the growth
rate ωi increases until unstable modes are encountered (not shown in figure 2). For
even larger phase velocities, negative growth rates prevail again.

Figure 3 depicts the real part of five representative eigenfunctions corresponding to
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Figure 2. Spectrum of a falling liquid sheet for κ = 5× 104 and U = 0.4.
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Figure 3. Selected eigenfunctions for liquid curtain flow with κ = 5× 104 and U = 0.4. From left
to right: 1st, 2nd, 3rd, 5th and 10th eigenfunction (sorted by ascending positive phase velocity).

the first, second, third, fifth and tenth mode (with an ordering in terms of ascending
phase velocity ωr). These eigenfunctions illustrate the fundamental shapes of the
sheet oscillations. Different values of κ and U result in qualitatively similar spectra
and eigenfunctions. As is apparent from the eigenfunctions, we have to question
the validity of higher-frequency modes in the light of the assumptions we made in
the derivation of the governing equations. Viscous and surface tension effects will
certainly play a role for these modes. Nevertheless, the low-frequency eigensolutions
will be sufficient to explain the overall dynamics of the liquid curtain oscillations, as
shown below.

3.1. Comparison with experiments

As mentioned in the introduction, experimental efforts have consistently and reliably
observed a dominant low-frequency signal that corresponds closely to the fall time
Tfall =

√
U2 + 2 − U of the curtain. In our case we will compare the results of the

linear stability analysis with experiments performed by Sundström et al. and Baille
(1994). The data are given in table 1. The column labelled fTfall contains the product
of measured frequency and fall time, appropriately non-dimensionalized. Throughout
the various experiments, this product represents a robust feature of the oscillating
liquid sheets that cannot be attributed to the least-stable frequency resulting from a
linear stability calculation. It is worth mentioning that even the product of the lowest
frequency (based on a linear stability analysis) and the fall time exceeds the measured
product by more than 40% for the experimental configurations given in table 1.

3.2. Multimodal analysis

We re-examine the behaviour of the linear system by constructing and evolving initial
conditions that consist of linear combinations of low-frequency modes. Optimizing
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Initial thickness Width Length Initial speed Observed frequency
H (mm) B (cm) L (cm) u0 (m s−1) f (Hz) fTfall

1.5 17.5 31 2.6 9.85 0.9876
2.2 9.00 1.0136
2.4 9.38 0.9956

39 2.6 8.50 1.0365
2.4 7.87 1.0126
2.1 7.50 1.0497

50 2.6 6.63 0.9939
2.2 6.00 0.9954
2.1 5.90 1.0049

2 13.5 70 1.57 4.000 1.0009
1.70 4.125 0.9996
1.83 4.375 1.0271
1.97 4.750 1.0783
2.10 4.625 1.0181
2.23 4.875 1.0412
2.36 5.250 1.0883

Table 1. Experimental data for water curtain flow. From Sundström et al. and Baille (1994).

this linear combination of eigenfunctions, we hope to recover a frequency feature
that not only matches the experimental data, but also displays the same robustness
throughout a large parameter range.

Before starting this multimodal analysis we need to derive a physically meaningful
way of measuring the size of the perturbation. We decided on the sum of kinetic
energy in the horizonal (x) direction and the compression work the curtain performs
on the air cushion:

E(t) =
1

2

∫ 1

0

|v′|2 dx︸ ︷︷ ︸
kinetic energy

+
1

2
κ

∫ 1

0

|f̄|2 dx︸ ︷︷ ︸
compression work

. (3.3)

Based on this disturbance measure we consider initial perturbations that consist of a
linear combination of the first 2N eigenfunctions obtained from (3.2), i.e.(

v′
f̄

)
=

N∑
|i|=1

αi(t)

(
V
F

)
i

. (3.4)

Computing the total energy at time t as a maximum over all possible initial conditions
requires the numerical evaluation of (see Schmid & Henningson 2001 for details)

max
αi

E(t)

E(0)
= ‖Q exp(iΩt)Q−1‖2 ≡ G(t), (3.5)

with QHQ = M and the entries of the matrix M given as

Mij =
1

2

∫ 1

0

V ∗i Vj + κF∗i Fj dx. (3.6)

The diagonal 2N×2N matrix Ω contains the eigenvalues. The maximum amplification
of energy (as defined in (3.5)) versus time is plotted in figure 4(a) for the parameter
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Figure 4. Multimodal stability analysis of a falling liquid sheet for κ = 5 × 104 and U = 0.4. (a)
optimal energy amplification G(t) versus time, see equation (3.5); (b) pressure difference p versus
time, obtained from the linear evolution of the optimized initial condition.

setting of figure 2. The first N = 44 eigenfunctions – spanning a phase velocity
range from ωr = −193.08 to ωr = 193.08 – have been included in the computations.
The time axis is scaled by the fall time Tfall =

√
U2 + 2 − U. We observe the

strongest amplification of total energy close to the fall time Tfall of the system – in
accordance with experimental results. A Tfall-periodic pattern is observed that results
in a significant amplification of initial energy. Varying the governing parameters, κ and
U, produces qualititatively similar results, i.e. strong energy amplification in the form
of a Tfall-periodic signal. The same is observed when including more (high-frequency)
eigenfunctions in the computations. Starting with the optimal linear combination
of low-frequency modes we evolve this initial condition according to the linearized
equations and compute the difference between the pressure in the air cushion and the
ambient pressure as a function of time. The result is plotted in figure 4(b). Again,
we observe strong pressure peaks whose frequency strongly correlates with the fall
time Tfall. This is in excellent agreement with experimental data and establishes the
Tfall-periodic pressure signature of oscillating liquid curtains as a multimodal rather
than a modal phenomenon.

The temporal evolution of the curtain shape starting with the optimal initial condi-
tion is shown in figure 5. Various interesting features are worth pointing out. Although
high-frequency oscillations are present in the liquid sheet, the main deformation of
the curtain – and thus the highest amplitude of the pressure in the air cushion – is
caused by a wave packet travelling down the sheet. As this wave packet approaches
the bottom basin, we notice a deformation of the liquid sheet along its entire length
(see the arrow in figure 5) which triggers and gives rise to the formation of a new
wave packet near the top of the curtain, hence completing the cycle of Tfall-periodic
curtain oscillations. The repeated triggering of wave packets running down the curtain
is due to the global coupling by the compressible air cushion. In the absence of this
coupling, the governing equations reduce to simple advection equations, and once
an initial disturbance reaches the lower basin, the oscillatory motion of the liquid
sheet terminates. The multimodal analysis also demonstrates that neither a purely
sinusoidal pressure oscillation is justified nor a resonance condition has to be invoked
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Figure 5. Curtain shape versus time for κ = 5× 104 and U = 0.4 starting with the optimal initial
condition, i.e. the initial condition that results in the maximum energy amplification near t = Tfall

in figure 4(a).

(Treiber 1974) to determine the characteristic frequency of the pressure oscillations
in the air cushion.

An alternative explanation of the behaviour shown in figure 5 invokes the concept
of global modes. Linear stability theory produces these global modes (see figure 3)
that have support over the entire computational domain. A superposition of these
global modes can then be used to describe localized structures in the flow, such
as wave packets. Cossu & Chomaz (1997) were the first to demonstrate that a
superposition of global modes can describe convective propagation of wave packets
in a non-parallel flow. Their analysis focuses on the Ginzburg–Landau equation with
spatially varying coefficients as a model for many fluid systems. Similarly, in our case,
the dynamics of the curtain is not governed by individual global modes but rather
by a linear combination of them. The observed frequency signature can therefore
not be retrieved from analysing the phase velocities of global modes, but is instead
governed by the phase velocity difference of a linear combination of global modes. A
careful analysis of the spectrum confirms that the real parts ωr of two consecutive
eigenvalues are separated by approximately 2π/Tfall.

The behaviour of the falling liquid curtain is reminiscent of the stability properties
of subcritical wakes behind bluff bodies. Although the wake flow is globally stable, a
marked response to external forcing as well as large amplification of localized initial
conditions are observed (Huerre & Monkewitz 1990). For spatially varying flows a
large body of literature (see Huerre & Monkewitz 1990; Huerre 2000 and references
therein) addresses the link between global instabilities and local stability characteris-
tics. Monkewitz, Huerre & Chomaz (1987) and Chomaz, Huerre & Redekopp (1991)
have proposed a model for the near wake of two-dimensional bluff bodies and, using
multiple scales, have derived an expression for the slowly varying amplitude of the
dominant global mode. This type of analysis is related more to the approach used
by Treiber (1974) than the one taken here, since it describes the frequency selection
in the wake by a resonant driving of the slightly damped dominant global mode.
A detailed investigation of the link between local and global stability properties for
the falling liquid sheet is beyond the scope of this presentation, but is certainly a
worthwhile topic for future work.
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4. Summary
A stability analysis of a falling liquid sheet enclosing an air cushion has been

performed and compared to experimental data. Single mode analysis based on the
least-stable or the lowest-frequency global mode has not been successful in reproduc-
ing experimental results. However, an approach based on the optimal superposition
of many global modes has produced very good agreement with the experimentally
observed frequencies. The resulting pressure signal in the air cushion shows a strong
correlation with the fall time of particles in the sheet. This correlation can be observed
over a wide range of the governing parameters, again in accordance with experimental
findings.

We wish to acknowledge Emmanuel de Langre (LadHyX, École Polytechnique),
Fritz Bark (Mechanics, KTH Stockholm) and Peter Blossey (University of Wash-
ington) for helpful comments and discussions. During the early part of this project,
Lars-Göran Sundström (KTH) generously shared his insight into the water curtain
problem with us; we were deeply saddened by his untimely death.
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